报告题目: Recent developments on edge-transitive graphs and maps
报告人: Marston Conder
报告时间: 2025年9月23日上午10:00-12:00
报告地点: 北区四号教学楼208
报告摘要: Edge-transitive graphs and edge-transitive maps are discrete objects that have received relatively little attention compared with their vertex-transitive and arc-transitive siblings. In this talk I will explain a new approach (taken in joint work with Gabriel Verret) to finding all small edge-transitive graphs, using single and twin actions of transitive permutation groups, which has resulted in the determination of all edge-transitive graphs of order up to 47, and bipartite edge-transitive graphs of order up to 63, and the answer to a 1967 question by Folkman. Then I'll talk about some recent work on edge-transitive maps, which has resulted in the answer to an 18-year-old question by Siran, Tucker and Watkins about whether an orientable surface can carry edge-transitive maps of all 14 types.
报告人简介: Marston Conder院士,是一位国际声望极高的数学家,国际代数图论方向领头人,现任新西兰奥克兰大学杰出教授,新西兰科学院院士。曾任新西兰皇家科学院院长、新西兰皇家学会副主席、新西兰数学会理事长、新西兰数学及应用研究所所长,奥克兰大学副校长、代数领域顶级期编委。2014年获新西兰最高科学奖,即皇家学会。已发表SCI论文180余篇,其中多篇发表在数学领域顶级期刊,被SCI引用180余次,平均引用率为6.72,h-index为11。主要从事群论、组合论、代数计算、地图、多面体等领域研究。