欢迎来到山西师范大学数学与计算机科学学院!
首页
学术动态
首页 > 正文

【预告】Partitewise Entanglement

来源: 日期:2025-06-15 作者: 浏览次数:

报告题目:Partitewise Entanglement

报告人:郭 钰

报告时间:2025年6月17日9:00-11:00

报告地点:腾讯会议 559 112 688

报告摘要:It is known that $ rho^{AB}$ as a bipartite reduced state of the 3-qubit GHZ state is separable, but part $A$ and part $B$ are indeed entangled with eachother without tracing out part $C$.Namely, whether a state containing entanglementis always dependent on the global system it lives in.We explore here such entanglement in any $n$-partite system with arbitrary dimensions, $n'geqslant3$, and call it partitewise entanglement  (PWE) which contains pairwise entanglement (PEproposed in[Phys.Rev.A 110,032420(2024)]as a special case.In particular, we investigate the partitewise entanglement extensibility and give a measure of such extensibility, and from which we find that the reduced state of a genuine entangledstate could be any mixed state without pure reduced states, and that the maximalpartitewise entanglement extension is its purification.We then propose three classesof the partitewise entanglement measures which are basedon thegenuineentanglement measure,minimal bipartition measure, and the miimal distance fromthe partitewise separable states, respectively. The former two methods are far-rangingsince all of them are defined by the reduced fuctions.Consequently, we establish the framework of the resource theory of the partitewise entanglement and the genuine partitewise entanglement for which the free states are the states with pure reduced states.

报告人简介:郭钰,内蒙古大学数学科学学院教授、博士生导师。主要从事算子理论、算子代数与量子信息交叉领域理论研究。主持在研国家自然科学基金面上项目1项、内蒙古自治区青年科技英才项目1项,主持完成国家自然科学基金面上项目、国家自然科学基金青年科学基金项目、中国博士后科学基金项目、山西省自然科学基金面上项目、山西省自然科学基金青年基金项目、山西省留学人员科技活动择优资助项目、山西省高等学校科技创新项目优秀成果培育项目等项目8项。在科学出版社出版专著1部,在Quantum、Quant.Sci.Tech.、Phys.Rev.A、New J.Phys.、J.Phys.A等杂志发表学术论文50余篇。

一审:朱燕芬

二审:吴晓坤

三审:孙学虎